Chiral N-salicylidene vanadyl carboxylate-catalyzed enantioselective aerobic oxidation of alpha-hydroxy esters and amides.

نویسندگان

  • Shiue-Shien Weng
  • Mei-Wen Shen
  • Jun-Qi Kao
  • Yogesh S Munot
  • Chien-Tien Chen
چکیده

A series of chiral vanadyl carboxylates derived from N-salicylidene-L-alpha-amino acids and vanadyl sulfate has been developed. These configurationally well defined complexes were examined for the kinetic resolution of double- and mono-activated 2 degrees alcohols. The best chiral templates involve the combination of L-tert-leucine and 3,5-di-t-butyl-, 3,5-diphenyl-, or 3,4-dibromo-salicylaldehyde. The resulting vanadyl(V)-methoxide complexes after recrystallization from air-saturated methanol serve as highly enantioselective catalysts for asymmetric aerobic oxidation of alpha-hydroxyl-esters and amides with a diverse array of alpha-, O-, and N-substituents at ambient temperature in toluene. The asymmetric inductions of the oxidation process are in the range of 10 to >100 in terms of selectivity factors (k(rel)) in most instances. The previously undescribed aerobic oxidation protocol is also applicable to the kinetic resolution of C-13 taxol side chain with high selectivity factor (k(rel) = 35). X-ray crystallographic analysis of an adduct between a given vanadyl complex and N-benzyl-mandelamide allows for probing the stereochemical origin of the nearly exclusive asymmetric control in the oxidation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chiral cobalt-catalyzed enantioselective aerobic oxidation of α-hydroxy esters.

A chiral cobalt-catalyzed enantioselective aerobic oxidative kinetic resolution of (±)-α-hydroxy esters, using molecular oxygen as a sole oxidant, is reported and a maximum of selectivity factor (s) 31.9 was achieved with >99% enantiomeric excess for unreacted α-hydroxy esters.

متن کامل

Chiral iron complex catalyzed enantioselective oxidation of racemic benzoins.

An efficient, economic and environmentally friendly enantioselective oxidation of racemic benzoins (alpha-hydroxy ketones) catalyzed by a chiral iron complex has been developed using molecular oxygen as a terminal oxidant with good selectivity and excellent enantiomeric excess.

متن کامل

Mechanism of the aerobic oxidation of alcohols by palladium complexes of N-heterocyclic carbenes.

Quantum mechanics (B3LYP density functional theory) combined with solvation (Poisson-Boltzmann polarizable continuum solvent model) was used to investigate six mechanisms for the aerobic oxidation of alcohols catalyzed by (NHC)Pd(carboxylate)(2)(H(2)O) complexes (NHC = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Of these, we find that "reductive beta-hydride elimination", in which the be...

متن کامل

Squaramide-Catalyzed Enantioselective Michael Addition of Masked Acyl Cyanides to Substituted Enones

Masked acyl cyanide (MAC) reagents are shown to be effective umpolung synthons for enantioselective Michael addition to substituted enones. The reactions are catalyzed by chiral squaramides and afford adducts in high yields (90-99%) and with excellent enantioselectivities (85-98%). The addition products are unmasked to produce dicyanohydrins that, upon treatment with a variety of nucleophiles, ...

متن کامل

Palladium(II)-Catalyzed Enantioselective C(sp3)–H Activation Using a Chiral Hydroxamic Acid Ligand

An enantioselective method for Pd(II)-catalyzed cross-coupling of methylene β-C(sp(3))-H bonds in cyclobutanecarboxylic acid derivatives with arylboron reagents is described. High yields and enantioselectivities were achieved through the development of chiral mono-N-protected α-amino-O-methylhydroxamic acid (MPAHA) ligands, which form a chiral complex with the Pd(II) center. This reaction provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 10  شماره 

صفحات  -

تاریخ انتشار 2006